
349

Design by Tweet enables Twitter users to collaboratively code
visual compositions by writing tweets that use a simple Pro-
cessing-inspired API. Twitter users can participate by sending a
specially formulated tweet to @designbytweet. In response, this
account will automatically post an image of the composition
after executing the user’s commands. The Design by Tweet name
mirrors that of Design by Numbers, one of John Maeda’s projects
at the MIT Media Lab in the 1990s.

Keywords
Programming
Creative code
Twitter
Social media
Collaboration
Design
Processing

DESIGN BY TWEET:
PROCESSING-INSPIRED
COLLABORATIVE CREATIVE
CODING VIA TWITTER

BRAD TOBER
Boston University, Boston,
Massachusetts, USA

brad@bradtober.com

Computation
Communication
Aesthetics
& X
Bergamo, Italy

xCoAx

2016.

.org

350 1 OVERVIEW

This paper introduces Design by Tweet (DBT), a tool enabling col-
laborative, Processing-inspired creative coding via Twitter (vid-
eo demo). DBT is, at its essence, a Twitter bot that continuous-
ly listens for @reply tweets to itself (tweets that begin with “@
designbytweet”) via the Twitter API. Hosted on a Node.js server,
DBT parses each of these @reply tweets and first makes a de-
termination as to whether or not it is in the required format. If
the tweet is able to be parsed according to the DBT format, its
commands are then executed and the resulting visual output is
applied to a persistent server-side canvas / drawing surface. DBT
then responds by posting a tweet with an image of the canvas
following the execution of the user’s commands, mentioning the
user in the tweet text.

While many projects (like Processing) have made creative coding
significantly more accessible, the need for standalone integrated
development environments still presents a barrier to entry. DBT
aims to address this issue by appropriating an existing platform
that is conventionally used for social communication and inter-
action. Twitter’s prominence means that using it as a platform
for creative coding makes logical sense in terms of increasing the
potential number of creative coders.

2 TECHNICAL DOCUMENTATION

The collaborative nature of DBT means that multiple users si-
multaneously contribute to a single canvas. The DBT canvas is a
fixed size, with a width of 1024 pixels and a height of 512 pixels
(for optimal visibility on Twitter). The origin, where the x- and
y-coordinates are both equal to 0, is located at the top-left cor-
ner. From the origin, the x (horizontal) axis increases toward the

Fig. 1. Still shots of the footage taken
in Snowdonia.

http://www.bradtober.com/work/design-by-tweet/
http://www.bradtober.com/work/design-by-tweet/

351 right and the y (vertical) axis increases toward the bottom. DBT
users can view the current DBT canvas, as well as a historical
record of all previous canvas iterations, on the @designbytweet
Twitter profile.

Users can participate by sending a specially formulated tweet
to @designbytweet. The format of this tweet should follow “@
designbytweet command1; command2; command3; ...” where

“@designbytweet ” is the DBT Twitter handle, followed by a space,
and “command1; command2; command3; ...” is a sequence of
one or more DBT API commands, each followed by a semicolon.
Spaces are not needed between both commands and the com-
ma-separated parameters of commands. Users may include as
many commands in a tweet that can fit within Twitter’s 140-char-
acter limit.

The DBT API is “Processing-inspired” in the sense that it re-
flects the programming syntax that the Processing project has de-
veloped and promoted (Processing). However, the functionality
of the DBT API is limited to a subset of the Processing API. Many
functions, as well as code elements like variables and loops, are
not currently implemented. Also, all parameters must be literal
values. The initial DBT API incorporates some of the most useful
commands for quickly generating visual output (full documenta-
tion and API reference available at http://www.experimentalin-
terfacelab.org/dbt).

3 CONTEXT

While legitimate, interactive Twitter bots respond to some sort of
structure within a human Twitter user’s tweet  —  for example, @
KLMfares (Twitter 2015)  —  one would hesitate to refer to this as
programming the bot due to the fact that the interaction does not
occur over a series of back-and forth-tweets (a “conversation” in
Twitter terminology). This is even true for the only other (to the
author’s knowledge as of this writing) example of programming
via Twitter, Wolfram Research’s Tweet-a-Program (Wolfram
2014). This Twitter bot allows users to tweet Wolfram Language
programs to @wolframtap and receive the output in reply. How-
ever, these programs must exist within a single standalone tweet,
and there is no collaborative element integrated into the system.
As an example of a broader programming-related use of Twitter,
users of the SuperCollider language for real-time audio synthe-
sis and algorithmic composition share short, self-contained pro-
grams via the #sctweet and #supercollider hash tags (although
these programs are not executed on Twitter itself).

http://www.experimentalinterfacelab.org/dbt
http://www.experimentalinterfacelab.org/dbt

352 4 FURTHER WORK

DBT currently exists as a provocation  —  a number of Twitter us-
ers have demonstrated its technical viability, but its conceptu-
al viability remains to be seen and can only be tested with the
broader audience that would accompany increased visibility
of the project. The author hypothesizes that this visibility may
come along, in part, with increased utility of DBT, and so ex-
panding the DBT API is a priority for further work on the proj-
ect. Several early DBT users expressed particular interest in the
ability to repeat code easily, such as with a “for” loop. Moving
forward, it will be necessary to identify those elements of the
Processing API that can successfully be translated to and used
within the context of Twitter. For example, certain aspects of the
Processing API that use commands to encapsulate other related
statements  —  like beginShape() and endShape(), or pushMatrix()
and popMatrix()  —  may not be appropriate for use by DBT given
its collaborative focus. A user using these commands in a way
similar to Processing might find his or her efforts interrupted by
another user attempting to contribute to DBT at the same time.
Accordingly, all future improvements and additions to DBT must
be approached with the objective of facilitating user collabora-
tion in mind.

REFERENCES

Processing. “Language Reference
(API).” Accessed 13 Jan 2016.
http://processing.org/reference.

Twitter. “Automation rules and best
practices.” Last modified 8 Apr
2015. http://support.twitter.com/
articles/76915.

Wolfram. “Introducing Tweet-a-Program.”
Last modified 18 Sep 2014. http://
blog.wolfram.com/2014/09/18/
introducing-tweet-a-program/

http://processing.org/reference
http://support.twitter.com/articles/76915
http://support.twitter.com/articles/76915
http://blog.wolfram.com/2014/09/18/introducing-tweet-a-program/
http://blog.wolfram.com/2014/09/18/introducing-tweet-a-program/
http://blog.wolfram.com/2014/09/18/introducing-tweet-a-program/

